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i. Jatroduction

We awe developing a aew approach to estimation of statistics. This technique, called
Wntsanmpug", is fda ntiydifferent from known techniques in that it does not

Involve sampling In any form. Rather, it Is a sort of inverse of sampling.

Consider some finite data population P that we wish to study (see figure 1). Suppose
that P is large, and It is too much work to calculate many statistics on It, even with a
computer. For Instance, P might be one million records, too big for the in
memories of most personal computers. We would have to store it on disk, requiring
minutes to transfer to main memory for a calculation of a single mean. Vf we are in a
burry, or If we are doing exploratory data analysis and are just Interested In a rough
estimate of the statistic, this is too long. So we could create a sample S of P, a
significantly smaller selection of Item from P, and calculate statistics on S rather than

-~ - on P, extrapolating the results to P.

But there Is another way we could estimate statistics on P, by coming from the other
mytin. We could take some larger met known to contain P -call it A for
mantbsanple"* - and calculate statistics on It, then extrapolate down to P.
Downwards Inference might be preferable to upwards inference fr-om a sample,
because an antimample can contain more information than a sample because It is
bigger. For Instance, sample S may be. missing rarm but important -data items In
population P that are in antisumiple, A.

But there seem to be a big probem with antisampling: antisampl. A must be larger
than population P, and It would seema more work to calculate statistics on A than P.

* But not necessarily. Am important principle of economics Is that cost can be
armrtieddistributed across many uses. Just as the cost of development of a

package of statistical routines can be distributed over many purchasers, the work of
calculating statistics on an antlsnpie A can be charged to many uses of thoseI statistics. We can do this If we choose an interesting antisample that people often ask
questons about. Of course, we don't have to confne ourselves to one antisample; we

can have a loprsentative met of them, a database abstract" for a particular universe
of data populations or database. There are many excellent situations foe
a motia . For instanl", U.S. Census aggregate statistics on population and income
are used by many different researc hr many differenit purposes, and laws require
periodic publication of this Information anyway.

Two caveats regarding these techniques are necessary, however. First, a form of the
*closed worl assumption" Important in database research [11J Is necessary: we can
only make inferenes about Items within the antisample, and not any larger
population. This means that ff the populations themselves are samples (a *hybrid'
approach of --iapln and sampling) we cannot make infrences about the larger
populations from which thoe samples are drawn, which makes the approach not very
useol. Second, as with sampling, estimates are approximate. Since antisamping and
sampling are rather different methods of estimation, sometimes antisampling is better
than sampling, but sometimes it Is worse. Generally antisampling is only a good Idea
when on or more of three conditions hold: (1) uses are doing exploratory data
analysis, the Iitial stages of statistical study; (2) users are statistically naive; or (5)
data Is p redmantl kept on secondary (magnetic or optical disk) or tertiary
(magetic tape) storag.

T hb mim0 b M..k by the m014et-Umate dichotomy In phYsics. Aulbempfing bsa sort of
Oppeissto @map,*&asks week=it of muplag tsebalQues.



2. The analog of antleampllng to sampling

2.1. Areas of correspondence of antisampling and sampling

Analogs of nearly a11 the same techniques can be used with antisamplag as with
Samping.For Instance if the sum statistic on a sample S Is T, theu the extrapolation

rule br te -un statistic Inferred on the population P is T times the ratio of the sine of
P to the Wlie of S. Similarly, if a sum statistic on an antisample is T the extrapolated
estimte of the etatitlonPlis T thes the ratio of thesWise of Ptothe ise of A. For
another thing, both sampling and antisampling can combine estimates based an

mutpesamples and multle antisamples using various methods. With antisamplIng
this Is perhaps more common since a study population can be specifed as the
intersection of several antisampis "parentm sets.

Antsaaplngis in bet a more natural direction hes making Inferences, since the
Inference malss (equivalently, *estimation methods*) used with sampling are oftent
derived haom assuming a class of distributions representing the data population and

'4' easolugwhat characteristics of the sample would be, then Inverting this and
reasmiugbackwards. So antiamoping rules are derived, then Inverted to got

sapigrules. Thus we expect less uncertainty associated with antisampling than
1; ~samplng. Note also another reason: samplig eq9 assumptions.of the tam af the

distribution from which the sample is drawn, while aniaP1106 does not use such
information. But there is a concomitant disadatg of antlestipling: the population
about which Ifehresn are drawn will not usually be random with respect to the
antismples. We can assume, It Is random to got 4reaonable-guest" estimates of
statistics, but this will -get us into trouble when dMrent attributes of the data are
strongly correlated and the query mentions the correlated attributes. Another
approach Is to store many correlation (linear or noamear) statistics about an
antisample so that the randemnes of a population within an antisample may be
estimated. These complentles have a partial Pcomaypeuaatlo In bounding capability, a
special property at antlsmliog not shared by sampling, discussed in the next section.

One important aspect of antiomping deserves emphasis, however. Unlike sampling,
antsamingis knwledge-1indve, It requires construction of a special auxiliary

structure, theo database abstract. This makes antisamplng system like the expert
sytmof artiII inMg Pc [61, requh ig for construction careful cooperation of

experts in the domain of the data. This Is because the choice of Just what data to put
in the database abstract Is importaist. One could just parameterize the distribution of

* each attribute, then paraetuuie the two 1 emoa distribution for each pair of
A attributes, and so n, as (5) doss, but this exhaustive approach bile to take advantage

of many redunancies between, the various distributions involved. After all, there are
an iMe number at possile statistics, subsets, and attributes (included derived omn)

on a finit database, and even with strong complexity limits on queries the
combinatorial possibilities can be Immense. Correlations between attributes can be
quantified as statistics too, by regesio coeffcient.. Expertise with the data is thu

4 required to advise what statistics best summmailse It. This must be traded off with the
rquec that usm as& particular sorts of queries (perhaps weighted by utilities of

query answers to them). Both normative (eg. mean) and extremum (e.g. manimum)
sttsis are doolable hee the abstract, to characterise both the common and the

uaeom s the data, duo user wil want to ask about both. Important set of
related Iteow brne by parttioning the values of each attribute should be the sets on
which statistics are comu~ted (what we In 1181 call Oflrst-ordsr sets", and what [6)
cans A).



2.2. Absolute bounds and production systemfs

An1am, u supports a different kind of Inference virtually impossible with sampling:
reaouugabout absolute bounds on statistics. Suppose we know the maximum- and

minmum of some attribute cot an antisample A. Then since P must be contained
entirely within A, any maximaum, mninimuaam, metant median, or mode of P Is bounded
above and below by the maximum and minimum on A. But you can't do this the
other way around: given the mnaximum and minimum of a sample S, you have so Idea
what the largest possible value or smallest possible value on the population P Is for the

maxiumminimum, mean, median, or mode on P. With particular assumptions
about P and S you can put confidence limits on statistics of P - say if you assume
that 8 Is a random sample drawn fromn P, and that P doesn't contain any extreme
outifiers, the mean of S will toad to be close to the mean of P, with a certain standard
deviation. But assumptions like theme, common in statistics, are massy and

unomfort able for computer scientists. There is a qualitative difference between being
-6 w and being completely sur. If one can obtain a tight absolute bound, It

should be preisrable to an estimate with a confidence, interval.

But a siou objection may be raised to absolute bounds as opposed to estimates and
comIes intervals: they can sometimes be very weak because they must account for
a ow Uily ectremse but possile case. There are four answers to this. First, many
uses of statistics do not require high degrees of accuracy. Hf one is doing exploratory
dsta' nlyi the statistic may. Just be uied to get an an idea of the order of the

iaatj of some plisismenas in the database, and absolute bounds within an order
of magnitude we quite satisfoctory [20j, Also, there are situations where statistics are
used Jar comparison, ad the only question Is whether the statistic is greater than or
loss than a value, as In choosing the best way to process a database retrieval from oe.~ j

of several equivalent methods based an estimated simes of the set Involved [4).

Secomnd, absolut bounads often, are easier to calculate than estimates. The usual need
for dtrambutm nal smou sens many more parameters In estimating than

bouning.A good dessousiration is in section 4.A estimates lead to nonlinear
equtlmswith ezpomentisls and no closedmform soluton, while bounds lead to

polynolals that can be handled with standard parametric optimisation methods to
obtain edosedhem expressous. The easier co*-tblt of bounds has long beena
reonse In computer Odom"e, asin the theory of algorithms where worst-case
analysls using the 0 notation is more como than the complexities of probabliati
modelbg required har average-can analysis.

Thid, absolute bounds can be maade tigher with associated assumptions of reasonable
ranges har Gume unpe~d statistics. For example, Chebyshevw's inequality says that
no morse than a fraction es/ Ds itesia can lie more than D from the mean of a
M hstr ion. ut If the distribution has a single mode close to the mean, the Camp-
Med inquat give results about twice as good. Other inequalities cover other
eniems.

The he'th reseas that possibly week absolute bounds on the value of statistics can
stil be useftl Is an imkportant insight In the Seld of artlicial intelgence. many smallIies of weak infomatioo can combidne to give strong information. And with

aolt Womb em quantites the combining Is easy Jut take the minimum of the
upper heesis, -ia the massaum of the Iower bounds, to get cumulative upper and
linwer bemd, sad no dltluimlo nmeimeassumptions are required. Often
very dlweunt binds of resmig can bad to dilrmt boundis on the same quantity,
and It Is untwal and inlat to combinem all these difibrent methods into a ingle



formula. Section 4 given some examples.

~ru asing methods as a number of small, Isolated pieces of information is
the ide beahnd the artifclal-intellgence concept of a "production system" [21, a
programming architecture that has been applied to many interesting problems. It is
the opposite extreme to the notion of a computer as a sequential processor, as for
instance in an optimisation program that uses a single global measure to guide search
far a solution to a complicated problem. In a production system there is no such
global metlr, only pieces of separate knowledge about the problem called "production
rubs", all competing to apply themselves to a problem. Production systems are good
at modeling complex situations where there are many special cases but no good theory
fo, accomplishing things. Thus reasoning about absolute bounds given statistics on
antisamplss seems a natural application for production systems. It has some
similarities to symbolic algebrac manipulation, which often uses this sort of
architecture [19J. We can use a number of more sophisticated techniques developed in
artificial iatlegaece to avoid redundant computation in a production system, as for
instance relaxation methods or 'constraint propagation" 1S. We can also write
estmation methods as rules, and combine both estimates and bounds into a
cM4e hemive sytem.

s.,.A short demonstration .- '.-

To show a little of what this approach can accomplish, we show some behavior for a
partial lnterlis implementation, as of February 1963. (We have done work since then
on a mare complete Prolos implemetation, but have not put it together.) The
database abstract Includes simple statistics on all irt-order (single-word-name) sets,
including statistics an each ship nationality, shp type, and major geographical region.
No correlatmns between attributes are exploited. 'Guess" is the estimate; 'gues-'
ern' the standard deviation associated with that estimate; "upper-limit' and
'lower4ulit are the absolute bounds on the answer. The 'actual answer" is found by
going afterwards to the actual data and computing the exact value of the statistic.
The system does not understand English - we have Just paraphrased our formal query
language to make it easier to read. or more details and demonstrations see [11.

How many French ships of type ALl re there?
(GUESS: 6.2 GUESS-ERROR: 2.5 UPPER-LIMIT: 10

LOWER-LIMIT: 3)
(ACTUAL ANSWER S T)

WMat's the mesa loagitude of a Liberian tanker of type END?
(GUESS: 45.4 GUESS-ERROR: 34.5 UPPER-LIMIT: 18

LOWER-LIMIT: 3)
(ACTUAL ANSWER IS 47.4)

How many type ALI tanker a either French or Italian?
(GUESS: 12.6 GUESS-ERROR: S.2 UPPER-LIMIT: 6S

LOWER-LIMIT: 3)
(ACTUAL ANSWER IS 14)

4%-'
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Whats the frequency of the most common tanker class
amoag the French, Italian, American, and British?
(GUESS: 16.5 GUESS-ERROR: 2.2 UPPER-LIMIT: 25

LOWER-LIMIT: 15)
(ACTUAL ANSWERJ 18 1)

What's the mean longitude for Liberian ships of type ALI
not in the Mediterranean?
(GUESS: 49.6 GUESS-ERROR: 42.4 UPPER-LIMIT: 176

LOWER-LIM[IT: 6)
(ACTUAL ANSWER IS 44.75)

What's the mean distance of ALI-type ships from SON5W?
(GUESS: 51.0 GUESS-ERROR: 12.3 UPPER-LIMIT: 57.1

LOWER-LIMIT: 6.0)

(ACTUAL ANSWER IS 42.S4073)

What's the most common registration-nationality region
j for type ALI ships currently in the Medterranean?

(GUESS: 46.6 GUESS-ERROR: 9.3 UPPER-LIMIIT: 78
LOWER-LIMIT: 26)

(ACTUAL ANqSERIS 1

4. Three examples

In this abort paper it is Imapousible to describe the varied categories of Inference rules
on antisamople statistics that we have studied. [12] and 1151 provide overviews, and
the latter provides additional detalls and many examples. But fhr illustration we
present three important categuries.

4.1. Bounding the else of set intersections

Set intersections (or equivalently, conjunctions of restrictions on a query set) a.re very
como in usew queres to databases. Zftiient processing requires good methods for
estimating their counts or rise In advance.

If we know the rise of the set being intersected, then an upper bound on the size of
the Intersetion is the minimum. of the set rses. A lower bound is the sum of the set
rise minus the product of the sie of the database, and one minus the number of sets

b inutersected, or sero If this In negative.I We can do better It we have more statistics on the antisamples. Nf we know the mode
fiellncie and number of distinct values sears attribute, then an upper bound is
the product of the minimum mode frequency over all set with the minimum number
of distinct values of a set over all sets. Soetime this bound will be better than the
upper bound in the last paragpaph, and sometimes not. We can see that If the two

naima occur hr the same set, the bound- will be more than the size of that set, since
the product of a mode frequency and number at distinct values for a single set must be7-7
mere than the asn of a set. On the other hand, consider two sets of sizes 1000O and
2000, with moefequencties on same attribute 100 and 500 respectively, and with

n iter of ditnt values 50 and Srespectively. Then the simple bound of the last

* .2' - 7- -7
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paraprapb is £000D, but the frequency-Imformatlon bound is mln(100,500) *mln(6O,5)
-M 500whlh is bete (smaller). So both approaches are needed.

We tan generalbe this method to case where we know more detailed information, of
the beuiuemcy distributons of the sets. We Just superimpose the frequency
dN-uiMotions and take the minimum of the -uperimposed frequencies for each value.
See Figure 2.

If Instead (or in addition to) frequency information we have maxima and minima on
some attribute, we may be able to derive bounds by another method. An uppe
bound as the maxum. of a set intersection is the smallest of the maxima on each set,
and a lower bound Is the largest of the minima on each set. See Figure 3. Hence ani
upper bound an the ese of an intesecio Is the number of Items in the entire
database having values between that cumulative maximum and minimum, If the
maxima are all identical and the minima are all identical, then the cumulative

* maximum and minima are the same as on any of the sets being intersected, so the
sipe(set-se) bound will always be better. But the maximum-minimum bound can

be an excullent one whenever two, or moe of the sets being intersected have very
diftrent rpugss, as when we are intersecttng two sets with ranges 100 to 500 and 450
to 750 respectively, and the cumulative range Is 450 to 560, and there are few items in
the database with those particular values - we can then impose an upper bound on
the lutpsectao.ule

We can also use sums (or equivalently, means) on attribuites. Supper A we wish to
estimate the else of the intersectona of only two set; (2) one set is A at 4tion of the
database hor the value of some numeric attribute; (3) we know " Aues this
attribute can have; and (4) know the ese and mean of both sets. Then we can writo

N two Hugeir Dlophautlue (Integer-oolutlon) equations with the number of Items hawing
each possible value of the attribute being the unknowns, and solve for a Sanie set of

pesiblltls.We can then take the minima of the pars of the miaximum possible
values hr each values, and sum to get an upper bound on the else of the Intersection.

Dlohaslueequations tend to support powerMo inforences, Aine the Integer-solution
constralat is a very strong one. There turn out to be many related phenomena that
can give additional constraints on the variables, making inferences even better. See
(141 Jor detall.

Several other kinds at reasoning can bound the else of set intersections as discussed in

4.2. Bounding the means of monotonically transformed values

Suppose we know the means and standard deviations of some antisampiss. Suppose
we we Inturested in the logarithms of the original data values. (Sometimes different
-awmtloin on the same data values are all useihl, or sometimes we may not be

sure when we ceaote the autbumiss what the best transhrmation Is, or sometimes
dlrm ! ranges of the data values require diffrent tranformatlons for best analysis.)
And suppoe we are interested in knowing the mean, of the transformed data values.
1151 exaies this problem in detall; we summarie It here.

A variety of classical techniques has been appled to this problem. For Instance, you
tan approulmate the logarithm curve by a three-term Taylor-series approximation at
the ma, giving as an estimate of the mean of the logarltm log(g)-(eO/ 2pm') But It
le hard to obtain confience Intervals on this result to quantity Its degree of



uncertainty, though several methods have been tied 171. This estimate is always
biased, and sometimes is an impossibility (when It gives a value unachievable with any
possible distribution consistent with the original mean and standard deviation).

Rule-based inferences about bounds provide an appealing alternative. Several simple
methods bound the mean of the logarithms, no one the best for all situations. We can
try them all, separately for upper and lower bounds, and combine results.

1. Linear approximation bounds. We can draw fines that lie entirely above or entirely
below the tihe function we are approximating on an interval. For many curves, the best
upper bound line is found by taking the tangent at the mean, and the best lower bound line
is found by drawing a secant across the curve from the smallest data value to the largest
data value. See Figure 4.

2. Quadratic-approximation bounds.

A. Taylor-series. That is, bounds curves from first three terms of a Taylor-series

about some point on the function.

B. Chebyshev-Lagrange. That is, a quadratic LaGrange interpolating polynomial
passing through the three points of the function that are -optimal for. Chebyshev-
approximation.

C. Specialpurpose. For particular functions (e.g. reciprocal and cube), particularly
tight bounds because of peculiarities of the mathematics of those functions.

D. Pseudo-order-statistic. Taylor-series approximations improved by Chebyshiev's
inequality and related inequalities.

S. Order statistics. If we know medians or quantiles we can break up the approximation
problem into subintervals corresponding to each quantile range, and solve a subproblem on
each.

4. Optimisation. We can iteratively converge to optimal bounds for a class of bounding
-- curves, by expressing the clas parametrically and optimising on the parameters, with

objective function the statistic being bounded. Tis tends to be computationally expensive
and not advisable when estimation speed is important.

4.* As an example, suppose we know the minimum of the set of data is 10, the maximum
Is 20, the mean Is 15, and the standard deviation is 1. Then the linear bounds on the
mean of the logarithm are 2.650 and 2.708; the Taylor-series bounds found by taking
the Taylor-series at the mean are 2.689 and 2.716; the LaGrange-Chebyshev's bounds
are 2.701 and 2.709; the Pmdo-Order-Statistics bounds are 2.700 and 2.711; and the
best quadratic bounds found by optimization are 2.703 and 2.706. For another

.4 example, suppose the minimum is 1, and maximum is 200, the mean Is 190, and the
standard deviation Is 20. Thien the linar bounds are 5.032 and 5.247; the Taylor-
series bounds are 1.484 and 5.242; the LaGrange- Chebyshev's bounds are 2.948 and
5.499; the pseudo-order-statIstics bounds are 3.363 and 5.242; and the bounds found
by quadratic optiminatlon are 5.032 and 5.242. These bounds are surprisingly tight,
and should be adequate for many application.

There Is a more direct optimathon method for this problem, involving treating the
optimisation variables as the values of a distribution satisfying certain constraints and

.4ebmlIdevesaotbud rvd n peln lentv.Svrlsml .
iiehdon h eno h lgrtmn n h etfr l iutos ecn""-



moving the variables around until an optimum is achieved. We have experimented
with euch optimization, but It is considerably less well-behaved than the parametric
oe umentioned earlier. ft is tricky to get to converge properly, eve in simple
situations. This optimization also suffers from serious sensitivity to errors in
calculation. And since we can only use a small number of variables compared to the
sime of many interesting populations, the number converged to by the optimisation
process will be only a lower bound on an upper bound, or an upper bound on a lower
bound, and these things are considerably less helpftJ to us than the upper bounds on
upper bounds and lower bounds on lower bounds obtained with the rule-based
inforentes diwscised above. This is a tiundamental weakness of these "direct"
optimization methods, and an important justification for our approach.

4.3. Optimal rules relating statistics on the same distribution

Another category of rules relates statistics an the same attribute, of the same set (as
* when one estimates or bounds the mean given the median). Many of these situations

are instances of the "Ioelercproblemw of the calculus of variations ([221, ch. 4),
for which there is a general solution method. The mathematics becomes complicated
eves for some ratheir simple problsms, but the rules generated are mathematically
guaranteed to be the best possible, an important advantage.

The idea is to Aind a probability distributionthat has an extreme value for either some
statistic or the entropy of the distribution, and then find the extreme value. Let the
probability distribution we are trying to determine be y - (x). Suppose we have
some Integral we wish to maxmise or minimise:

Suppose we have prior constraints on the problem as known statistics expressable an
integrals:

, cfG (z,V,yu, -)ds

where j goes from 1 to It, the total number of knows statistics. An beore, the limits m
and M represent the nimum and maximum on the distribution, or at worst lower
and upper bounds respectively on these quantities; these are necessary for this method
to work, and they must be the same for aDl integrals.

As examples of statistics expressible as Integrals:

mea: fqidz

fonsncee: f (Z -p ON&
as

1/2
root mea ecore error: In -h(F)2

Meass: fVAdS -jv)gid , V.,(0) the *nl 96 etep atson

It was proved by Lagrange ([22], p. 51) that a necessary condition for an extremum
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(either maximum or minium) of the ? Integral is

AL+'%:

If the F is y'log(y), this method gives a necessary condition for the maximum-entropy
distribution. Several researchers have used this to obtain maximum-entropy estimates
of unknown moment statistics bom knowledge of other moment statistics, In both the
unldlmeudonal and multdimendonal cases ([17], Appendix). For the unldimensional
case, the form of the maximum entropy distribution given moments up through the
rthis

S..0 -I+ E aisi "

The remaining problem is to determine the As (Lagrange multipliers), which can be
tricky. A number of arguments in 11T] Justlf the term "optimal" for these estimates.

F can also be a statistic Itself. For instance If F is the kth moment when we know
values for all moments up through the (k.l)th, the necessary condition for a solution
becomes:

-0"

This is a kth-order polynomial, with a nmximum of k solutions. aence the probability
distribution that gives the extrema of the kth moment is a k-point discrete probability
distribution. It can be found by a symbolic optimization proem with 2k unknowns (k
values of x, and I associated probabilities) with k equality constraints in the form ofthe known k-1 moments plus the knowledge that the probabilities must sum to 1. !}

5. Detailed comparidow. antisampling vs. sampling

We now evaluate the relative merits of sampling and antisampling. We assume data
populations stored In computers (a condition that is becoming increasingly common
with routine administrative data).

5.1. Miscellaneous advantages of antisampling -

Most of our arguments concern the relative efficiency of various kinds of sampling vs.
antisamping. But first some general points:

(1) Sometimes the data is already aggregated. Much of the published U.S. Census
data is - it provides privacy protection for an individual's data values. So we
must use antisamping methods in some form if we want to estimate statistics
not In the original tabulation - we have no other choice.

(2) Sampling is poor at estimating extremum statistics like maximum and mode
fhequency. Extremum statistics have important applications in Identifyig
exceptional or problematic behavior. Antisammpliug handles such statistics well,
In part because it can us extremum statistics of the entire database as bounds.

. . .--- •
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(8) Updates to the database can create difficulties fbr samples, since the information
about what records the samples were drawn from will usually be thrown away.
For anthampling with many statistics Including counts and sums, however, the
original data Is not needed: the antisample statistics can be updated themselves
without additional information.

5.2. Experiments

"o We have eondued a number of experiments comparing accuracy of antisampling
.I with sImlpe random sampling, using randomly generated queries on two rather

1110 at databases, as reported In chapter 6 of [18. When the same amount of space
was aseated to antisamping and sampling (that is, the else of the database abstract
was the same as the de of the sample) we found estimation performance (the
closeness of estimates to actual values) very similar in most cases, and better for
antisampling the rest of the time. This can be attributed to the duality of sampling
and antdmampling methods. Both exploit low-redundancy encodings of typically high-
redundancy database, so we expect their Information content and suitability for
estimation to be similar. An occasional better performance of antisampling seems due
to bounds.

We have also conducted more specific experiments with the set intersection bounds of
section 4.1 JI6], and the transdrmation mean bounds of section 4.2 J151. Al three sets
of experiments did not measure computation time because the test databases were too
smail, but we expect that this will be the major advantage of antisampling, as we now
diatom~

5.5. imp1e random sampling and paging

We are currently sein two important tendencies in statistical analysis of data sets on
computers [211: a shift frm large multi-user computers to tmali personal computers,
and a continued ncrease in the sise of data sets analysed as success has been achieved
with smaller data sets. Both make it Increasingly Impossible for analysis, or even
calculation of a mean, to be carried out in main memory of a computer, and secondary
storage issues are increasingly important. This Is significant because secondary
storage like magnetic disks and optical disks, and tertiary storage like magnetic tape,
Is organised differently main memory: it is broken up into "pages" or blocks"
that must be handled as a unit. This is not likely to change very soon, as it foilows
fam the physical limitations of secondary and tertiary storage. So since transfr of
pages from a secondary storage device to a central processor takes ordm of
magnitude (typically, a factor of 1000) more than the operations of that processor or
transrs within main memory, paging cost is the only cost of signfcance in statistical
analysis of large data set.

This has important implications for sampling methods because they are much lees
elMint whie data is kept in secondary storage than main memory. Consider smple
random sampling without replacement. We can use Yaos standard formula [261 to
estimate the number of pages that need to be retrieved to obtain k sample Items,
asmui Items are randomly distributed across pages, in just the same way the
formula Is used fM any set randomly distributed across pages. Let p be the number of -
Items on each database page, and let n be the number of Items in the entire database.
Then the fermula s:

n-p-k+l
p p ,'-i a-k-+-I

.7
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We have tabulated apoimaotlm to this fanction for some example values In Figure
5, usng the banula 121 which is much easier to evaluate while having a maximum,
error hr this range of values (reading off the tables In that paper) of lees than 0.1%.
We assumsed a millob-record database. We used two values for page size: p-lOG,
which suggests a record-oriented database with perhaps ten attributes per record, and
p-lO00, which suggests the transposed fie organization common with statistical
databases. As may be observed, the number of pages retrieved, essentially the access
cost for data in secondary storage, is close to the size of the sample for small samples.
It only becomes significantly less when the sample size approaches the total number of
pages In the database, In which case the number of pages retrieved approaches the
number of database pages, a situation in which sampling is useless. So simple random
sampling Is going to be approximately p times less page-efficient than a ul retrieval of
the entire database, which means 100 or 1000 times wore for our example values of p.
The obvious question is thus: why not just calculate the statistic on the database and
not bother with the Inexact answer provided by sampling?

But antisamplng does not shae this great paging inefficiency. Assuming all statistics
of attributes of each antiasmple are stored together on the same physical page - a
requirmnent usually es to M= since ther are not many usefkl statistics one can
give for a set as a whole - only one page need be retrieved for each antisample used.
Usually this is a small number. If we choose a good group of antisamples, we can
spet* *aay. populatI9s users ask about .in terms of set operations - Intersectlon,
union, and complement - on tlhe soft covered by the- antisamplus, or at worst proper -
subsets of those antisamples. For instance, If we want to know the mean of the
Amercas tankers in the Mediteranean, and we have antisamples fo every major
natiomalty, major shp type, and region of the oceans, we need only retrieve three
pages: the page with statistics about American ships, the page with statistics about
tankers, and the page with statistics of ships in the Mediterranean. In general, if it is
possible to exprs a population P in terms of K antisamples, we need only retrieve K
pages, independent of the sise of P, the sisse of the antisamples, or the sie of the
database. So as the database increases, the relative advantage of antisampling to
sampling inmas

5.4. Further difficulti with simple random sampling

Three additional problems complicate the use of simple random sampling relative to
antisamplg. First, it is usually desirable that sampling be without replacement, and
addltlod l algoritha and data structures are aseded to ensure this 125]. -

Second, we have so hr we have Ignored the effort to locate members of a data
population am pages In the first place, which can add ikirther paging costs. If we have
no Indexer hash table, we simply must examine each page in turn, throwing out the
ones that have no population members, and this increases the number of pages fetches.
For small populatloms, this means a high wastage probability that can easily be
greater than the size of the sample. So it seems desirable to access a population
throufh an index or hash table whenever possible. But an index may be too big to
rside in main memory, and have paging cost itself. Usually database indexes link

t Items having the same value for one particular attribute at a time, so it a
dat popuatiom P ot interest is speced by a number of restrictions on a number of
dlmt attributes, may pages of index may have to be retrieved folowed by a
lengthy intemectiom operation of the set of all pointers to data Items. Hashing can
mere eily avoid extra paging, but usually allows access on only oue attribute or .
combiatam of attributes, which means it is does not improve perfbrmance much in

#. e , " '.dl "e 'e '. J " .'.1 * ' . e *e.,",'. . . *. . ,. 
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mos datsibase systes

ThW4, many ostical database are not stored by record or "came" but In the
Moaa d hi (4, seete 4-1-4), where only values for one attribute for

diaMm (or sme, small subset of the total set of attributes) are stored an a
pqp. Tbb is an ekselut MOIE of st-age &W calculation of counts and means an a
dags attIhut. because there ane me values of that attribute per page. But it
usualy doesnt h4p sampling because the only sampling ratios that justif* sampling,
based meor abhoe arguments, tend to be very small, much less than the reciprocal of
the number of Items per page. Icreasing the number of items per page by

suapoition con only increase this by a small fat- in most cases (at best the ratio at
the eees oft b ecerd to the es of an attribute), which will often stil result in only
-n its bobs Ibea Per peps. Trasd loaaso slos all queriesinvolving several

cttlo~st Mn thessm peP.

5.5. 3*inie Is rundaeduad databases,

Them -dhadetgs of simpe reidss sampNg are chear and it may be wondered
whethe smm ethe Mo of samlw could be more compettive with antisanping.
After Wk, an onriis nsut at reserch has Sims, Into devisig a wealth of sampling

~.e~qms UhitsetlyOtheitnachigueem o have otherdisadvantages.

heile, i b isae addu"teatabase- that is, putting data items onto
pow Inc a ~ ru nWOW. to ot a smleU the could take, all the items on

jta her Paes, md sojt a herMm a o popes, and sve in paging 110).
(Noe On remdumhg se indn to the dat oe do no good - the actual data item
hihe 400 wha* 4m MOM JIM But bh is de hohe is sunda A policy has to be .

bmg bael he da et em used revdm mzh 1h e n additions, deletions
OF AMO Is the da6e, hi asgdatm of da t im are cemo and mus be
gua d o@ . Almsmit mdnmy pays of wai qIs put no restuictions6

Mthe deft pism. WMs ft we 1i-tlee u havbe to look at many pages
away Just to ftd enau& dat team to =A*hf them, evm V the database has been
sads

But doe s b n M mea mere sorims Adstdo to rno dtoms of a databaseu It
degrdesthe erhmemof the databeme hi unpthingot thn ampln, since no

lnems m put relate 16em Seg r on the sme page. Tbb isb riu became
mut Isp databaes e 1m to jast the dmpense, used hir instance hi
routine daksha perehms hi ate entry as was as statisica study. UVen hi a
database used only by slodstist redeite urts performance Jor calculatiua
of statistics en complte nan-eample sts.

M* Rejoinder 2: a separate databae hi saumpf

sne senging Is so anattetial to usual operatloas at the database, it might be
moe~d to a separate machbie, ori coie to now strucetures Inside the same machine,
and dame away MRo the original data. Babscts thes sample my be much work
ceedisetg our argument. of the previous ectims, but once done the cost can be

amartsodver m ~lil ueIes provided multipe queries can be asked, which-
Ieed on the Seeke of the qure and the usei~ees of the data.

but extraCted samplee are lees leuA' than extracted cntlsamples. If after studying
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some sample S we decide we need to look at a superpopulation of the original
population P, o sibling population of P (a population with a common
superpopulatlo with P), we must go back to the database and resample all over again
to obtain a mew sample to analyse - we cannot use any part of our old sample In the
spewpopulaton sample because clearly it Is biased in relation to the new sample. On
the other hand, if we chose an original data population P that was too large (even
though S i a cemfortable ese) and decide we want to focus In on some subpopulatlon
of it, merely censoring out items in 8 that do not belong to the subpopulation may
give too mn a set for statistical analysis, particularly It the new subpopulation Is
quite a bit miafler than the old. In other words, sampling is "brittle": the results of
one sampling are difficult to extend to a related sampling.

But antisampliag extends gracefelly to related populations. Adding another
restrition to restrictions defining a set is usually straightforward, and can never
wosen bounds obtained without the restriction - and the the parts of the previous
analysis can be reused. Similarly, removing a restriction introduces no new problems
sinc analysis of the new population was a subproblem studied In reasoning about the
original population. This accommodation of related user queries by antisampling Is
because much t at l analysis focuses on meaningful sets, not random sets, and
antaplss are sts.

I5.. ReJoinder 3: stratified and multistage sampling

Given the disadvantaes of randomising the physical placement of items in a database,
we might take the opposie course and place items on pages In systematic ways. To
sample we could use the same techniques people use in sampling a real world where
data items clustI n dlWant ways [1,6]. For instance, if pages epest time periods, -"- "
we could do a two-stage sampling where we choose fiSt random periods represented
by randoum pess, and then random Items within those pages. Or in a population
census database, It pages reprssent particular pals of geographical locations and
oceupation, we could do a stratfed smpling within carebly chosen geographcal-
occupational comubination.

But there are many problems with using such sampling paradigms:

1. They are not for amateurs. Much knowledge about the nature of the data is necessary to
use them properly - perhaps only by an expert statistician should, and even then models of
the data must be reconfirmed carefully. This can mean extensive prior statistical study of
relted data, as in the first eample above where we must be sore that the times choses re
truly random, or in the second cuample wher the geographical-occupational combinations
must be valid strata.

2. It is hard to quantify our certainty that proper conditions pertain, and it is therefore
difficult to put standard deviations on the estimates obtained by these samples.

S. Nf the data change with time their correlational properties may also change. Changes can
caus problems with pags oveiflowing or becoming too spars requiring awkward
immediate rearrangements of the partitioning scheme. .

4. We can only cluster (group semantically related items together) along one dimension at a
time. For instance, if we group bill by date, we cannot simultaneously group them by
geographical location. This is awkward because a good partitioning for stratified sampling
to study one attribute is not necessarily a good partitioning for another attribute - database

.% 0



stratllcoato in permanent unlike survey design strtification. And grouping records by
"hybrid" criteria based as different, dimensions of the data is hard to analyse.

S. Complex sampling paradigms wre limited to certain statistics. For instance, stratified
sampling o*l works well with Oadditive" statistics such as count and @am that can be
totalled over disjoint partitions to get a cumulatie statistic, as well as certain ratio
statistics.

6. Complex sampling paradigms may require additional page access. In order to find the
right pages for stratified sampling or multistaged clustered sampling, one needs "metadata"
191 describing the data and its storage, and the sisn of this often requires it be in secondary
storage. Mstadata i asusful for many other purposes such as access method selection @ad
integrity maintenance, so thern can be agood deal ofit for adatabiase. It asomakessmn
to keep it with bidme to the data, if any, and thes may have to be kep in secondary
storage ayway.

7. The comparision of stratifad and multistage sampling to simple eatasampling is uair
because there are more sophisticated hinds of antisampling that correspond to the more
sophisticaed kinds of sampling. For istance, "stratified antisempWg cas be don where
we partition a population into diujoint pins with stratiie seapling, but then use
antuamphang techniques to make the estimate on each piece, combining the reuts as with
stratified sampling. See Figure S. If the pieces are chosen to minimise intrapieci variation,
the result can be hitter than -that for simple antisampling. Soutetimes stratif"e sampling
will be better than stratified antisampliu, and sometimes vice versa, in the same way that
sampling compares with atisampling depending on how well the nature of the database is
captured in the databas abstract.

In Sumary, difcdut adiisrtve isuies I% both statgsteal analyi and database
design are raised by these mose ceomplicated sampuling designs, and people with the
mecinary expertise we sac. It may be am this reason alone will not be used,
because if me cannot be -ss ome Is getting a random sample than aD the conclusons
one draws boss that sample are suspect.

6.11. Rejoinder 4: 1pca~upe hardware

So hr we have assumed conventamal hardware. If not, statistical calculatom can be
faster, but this does not necessarily make sampling any more attractive.

For asample, we can use licertcksecondary storage devices (suveyed In 1151).
We can put hardware in the head(s) of a disk so that it calculates the - of all Item
on a track within one revolution of the track, or calculates the sum of selected Item
by marking the Items on mne revolutions and summing them on the next. The idea can
work hr any moment statistic, or maximum and minimum, but other order and
6 equncy statistics are not additive in this sese and do not appear to be computable
this way. So we can speed calculation of some statistics, perhaps additionally with
paraiselim in read operations em dillbrent disks or tracks, If we can afford a special-
prpos "mossent-ealculatiag' disk, which is likely to be expensive because of the

lmtddemand. But such a device would speed calculation, of the exact statistic on
the data toos, hasteisg comstrmctlom of a database abstract. onstruction might be
very MeslInt because it can be done by a single pass through all tracks of the disks In
a disk-basd database, an Intendive utilization of each track.

SIII ly, multiple disks or multip-head disks could enable ater statistical calculations
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dae Operatims could be done om several devices in paralld. But this doesn't make
the pag polsm o away - it Just makes paging faster. And it makes database
abstract comstructlnt simultaneously hater.

But thers is - hardware development that will improve the position of sampling
relative to antisaMpling: larger main memories that can hold larger databases.
Antisa ng can still be performed In this situation (and can be thought of as a form
of eachi), but the paging advantage disappears. Other advantages do not
dmqpewr, however. And database sises are increasing too.

S. Coacluaom'

We ae developing a new technique for estimating statistics, primarily statistics on
databases. This "antisamplng" is not just another sampling method, but something
*uadmndtafly different, and subject to quite different advantages and disadvantages
than sanmplag. We have presented some of them One disadvantage not yet mentioned
is the number of details that remain to be worked out. Considering the geat effort
over the years in the perfection of sampling techniques, much more work is clearly
needed to nmke antisampling techniques a routine part of a statistical analysis arsenal.
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minimum mean maximum

Figure 4: lKneaw bounds on a mea of transformed values
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Predicted paging for random sampling of 1,000,000 records
page sie sample sise # databse pages # sample pages

100 100 10000 99.5
100 30 10000 295.6
100 1000 10000 952.1
100 3000 10000 2595
100 10000 10000 6340
100 30000 10000 9525
100 100000 10000 10000
1000 100 1000 95.2
1000 300 1000 259.3
1000 1000 1000 632.5
1000 3000 1000 950.5
1000 10000 1000 1000.0
1000 30000 1000 1000.0
1000 100000 1000 1000.0

Figure 5: number of pages needed to get k random sample items from a million-record database,
Susing, approximation of [231
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Antlsample I Antisample 3
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se0 \t ion ma/el tion

Population-

(e.g. Iowans ages 30-34)

* Figizi 6: acratfied antiaampling
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